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SOLUTION OF INVERSE PROBLEMS IN HEAT TRANSFER BY THE METHOD OF

TRANSITION FUNCTIONS

B. 1. Strikitsa

Inzhenerno-Fizicheskii Zhurnal, Vol. 12, No. 3, pp. 330—335, 1967

UDC 536.2.01

A method has been developed for determining the transition function
@ for transverse flow around a cylinder.

Experimental data [1] on the local heat-transfer
coefficients in convective heat transfer with Re =
= 21-10% have been used to develop the method using
the functions &. The solution obtained in this way is
compared with the analytic solution of [1]. The prob~
lem is handled as follows.
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Fig. 1. Electrical model of
a cylinder used to find &.

1. The cylindrical region G is specified.
2. The temperature t(x,y) within the region satisfies

0% 0%

o T 0. (1)

3. A constant temperature t; is maintained on the
internal surface S

4. The experimentally determined temperature dis-.

tribution is used for the external surfaceS;.

5. The temperature of the incident air flow is given.

The problem is to determine the local heat-transfer
coefficients o|gc-

The problem is solved in three stages. First, an
electrical analog is used to determine the transition
functions & by a method analogous to that for deter-
mining the Z functions considered in [2, 3].

A two-layer model on the scale m* = 8 (Fig. 1) is
constructed from conducting paper; the error in the
solutions given by such models does not exceed 1.5%
[4]. The potential equal to 0% is applied to the inter-
nal surface, while the external surface is divided into
32 equal parts; the numbers 1,2, ..., 32 in Fig. 1
denote these parts. A current-carrying lead is applied
to one of these parts; the current I; is determinedfrom
the potential difference across a resistor R, connected
to the lead. The potential difference on Ry is adjusted

to 100%. The potentials U; at the points 1, 2, ..., 32
are measured, the transition functions being defined
as

O, =Uyl,. (2)

The &, are sufficient to solve the inverse heat-transfer
problem for an axially symmetricbody, but all the &y
mustbe known for abody of arbitrary shape, inwhich i
are thepoints at whichthe U;j are measured andjare the
points at which the currents Ij are supplied in turn.

In the second stage, a system of linear algebraic
equations is compiled, whose solution gives the local
currents at the surface of the model.

If currents are supplied simultaneously to the 32
points on the outer surface, the potentials at those
points are found from the principle of superposition,
which applies to linear systems:

n
Vo, 1=0v, 3)

j=1

in whichi=1,2,..., mandj=1, 2, ..., n.

We must have m = n if the solution to this system
is to be unique (m = n = 32 in our case); here the
act as unknowns, while the Uj are readily determined
from the temperature distribution via a scale coef-
ficient Cy, which is taken as 1. The choice of scale
coefficients is described below.
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Fig. 2. Distribution of the heat-transfer coefficient

Ctot (W/m” - deg) as afunction of 8 (deg) for the outer

surface of a sphere: 1) data of {1], 2) results from
use of &.

The result is a system of 32 linear algebraic equa-
tions in 32 unknowns, which is represented symboli-
cally [5] in Table 1. Computer solution gives Ijye, the
currents at the surface of the model (Table 2), which
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Table 1 (cont'd)

Iy, Iy Iz I 1, Iag Ie I Ie Ip: L4 Iz Igo 1as Iys u;
i 0 0 0 0 0 0 0 0 0 11 33 99 347 1146 3914 27 .4
2 0 il 33 99 347 1146 27.1
3 0 11 33 99 347 26.6
4 0 11 33 99 26.0
5 0 1 33 25 .4
6 0 I 24.3
7 0 23.0
8 0 20.8
9 0 17.9
10 0 18.9
11 0 0 20.2
12 11 0 0 21.4
i3 33 11 0 0 22.8
14 99 33 11 0 0 '24.0
15 347 99 33 11 0 0 25.3
16 1146 347 99 33 11 0 0 26.5
17 3914} 1146 347 99 33 11 0 0 27.2
18 119541 3914 1146 347 99 33 11 0 0 26.5
19 391411954 ) 3914] 1146 347 99 33 11 0 0 25.
20 1146 3914|11954| 3914 11461 347 99 33 11 0 0 24.0
21 3471 1146] 3914(11954| 3914 1146 347 99 33 11 0 0 22.8
22 99 347 1146] 391411954] 3914| 1146 347 99 33 11 0 0 21.4
23 33 991 347| 1146 3914{11954| 3914} 1146] 347 99 33 11 0 0 20.2
24 11 33 99 347 11467 391411954 | 3914 1146 347 99 33 11 0 0 18.9
25 0 1 33 99 347 1146 391411954} 3914 1146 347 99 33 11 0 17.9
26 0 11 33 99 347 1146 391411954 3914 1146 347 99 33 11 20.8
27 0 11 33 99 347} 1146| 3914|11954] 3914 1146 347 99 33 23.0
28 0 11 33 99 347 1146 3914] 11954 3914 1146 347 99 24 .3
29 0 11 33 99 347| 1146) 3914 11954 3914 1146 347 25 .4
30 0 11 33 99 347] 1146 3914 11954 3914 1146 26.0
31 0 11 33 99 347 1146 3914 11954 3914 26.6
32 0 0 0 0 0 0 0 0 11 33 99 347 1146 3914 11954 27.1
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Table 2
Distribution of the Principal Parameters on the External Surfaces
of Model and Cylinder

g =] = o | Lo s x>
sl Am| g™ A <« NE . & (I"?_% + 7 =
S| & e Sl & o IS = (RS §NE ey E
EEIZgER TR OZ - LE | 8E | g2 L3 &
N e I g 2 e | £¥ | 2F |27
| B & & | o =
1 0 1205 4.2 5061.0 48 .4 104.6 102.0
2 11.25] 32 348.75 1182 4.2 4964 .4 48.7 101.9 100.2
3 {225 31 337.5 1156 4.2 4855.2 49.2 98.6 97.9
4 | 33.750 30 | 326.25 1127 4.2 4733 .4 49.8 95.1 95.6
5 45 29 315 1116 4.2 4687 .2 50.4 93.0 92 .2
6 56.25 28 303.75 1059 4.2 4447 .8 51.5 86.4 87.0
7 | 67.5] 27 |292.5 1023 4.2 4296 .6 52.8 81.4 79.7
8 | 78.75] 26 | 281.25 926 4.2 3889.2 55.0 70.7 69.5
9 |90 25 | 270 662 4.2 2780.4 57.9 48.0 49.1
10 1101.25] 24 | 258.75 815 4.2 3423.0 56.9 60.2 59.8
11 {112.5] 23 | 247.5 879 4.2 3691.8 55.6 66.4 66.0
12 |123.75] 22 | 236,25 922 4.2 3872.4 54.4 71.8 72.5
13 {135 21 225 995 4.2 4179.0 53.0 78.9 79.1
14 |146.25] 20 213.75 1038 4.2 4359.6 51.8 84.2 85.6
15 |157.5 19 12025 1100 4.2 4620.0 50.5 91.5 91.6
16 |[168.75] 18 191.25 1162 4.2 4880.4 49.3 99.0 97.6
17 1180 1220 4.2 5124.0 48.6 105.4 104.1

correspond to the distribution of Qj,c, the heat flux

at the surface of the cylinder. We employ scale coef-
ficients to convert from the electrical quantities to the
thermal ones, which coefficients must obey

Co 1, (4)

i
in which CR = Rg/R¢ is the ratio of the electrical re-
sistance of a sector cut from the model to the thermal
resistance of the corresponding sector of the cylinder
and C; = (U = Ug)/(t — ty) is taken as1, withthe origins
taken as the potential and temperature of the internal
surface, respectively, while CQ = 1/Q is determined
from 4).

As Rg =23 000 om, Ry=1.27 deg/W, and Cg =

=18 110 ohms - W/deg,

Cr

Cq=Cy/Cr=1/18110 V71, (5)
Then
Qioc= f10c/Cq = 18110110c W. (6)
In the third stage we deduce the aj,, as
Uloc = Jloc/A foc- (1)
Then
T10c= Q1oc /F ¢ (8)

in which Fy = Bt is thearea of a part of the cylinder of
arc length B¢ and unit height. Here

B¢=Be/m*, (9)

in which B, is the length of the outer circle of the
model used in supplying current in the determination
of &.
From (6)—(9) we have
Groc=hoc k=420 W/m’ (10)
in which
k= Crm*/C,Be V/m (11)
Table 2 gives the numerical values of q,.; Table
2 and Fig. 2 compare the total local transfer coef-
ficients agg.tot @5 found analytically [1] and via the &.
The discrepancies do not exceed 3%.
A major advantage of this method is that & once
found on the model can subsequently be used to solve
problems in the absence of the electrical model. This

is of considerable importance, since any given object
can give rise to many inverse problems, whose solu-
tion is much facilitated by the &.

A further advantage is that the & may be used to
solve inverse problems in steady-state heat transfer
for all similar bodies, the only change being recalcu-
lation of the scale coefficient k via (11).

An analogous method is readily developed for in-
verse problems in transient-state heattransfer, values
of the ® being obtained for each point in time. The
method is also applicable to bodies of any shape.

NOTATION

I is current, U is voltage, Rg is electrical resist-
ance, By is 1/32 of the length of the external circum-
ference of the model, m* is the scale of model, k is
the coefficient for converting from current to heat
flux density, fisthe temperature, f;is the temperature
of internal surface of cylinder, x and y are coordinates,
Q is heat flux, q is the density of heat flux, « is the
heat-transfer coefficient, aq¢ = og + @y, o, is the
convective heat-transfer coeificient, o, is the radia-
tive heat transfer coefficient, R; isthermal resistance,
At is temperature difference, By is 1/32 of length of
external circumference of cylinder.
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